
Journal of Mathematical Chemistry Vol. 30, No. 2, August 2001 (© 2001)

An application of functional analysis method to the
potential of electrical double layer for spherical micelles

Zheng-Wu Wanga,b,∗, Xi-Zhang Yic, Da-Ren Guanc, and Gan-Zuo Lib
a Department of Chemistry, Guizhou Normal University, Guiyang, 550001, P.R. China

E-mail: wangz.w.@263.net
b Key Laboratory of Colloid and Interface Chemistry for State Education Ministry, Shandong University,

Ji’nan, Shandong, 250100, P.R. China
c Institute of Theoretical Chemistry, Shandong University, Ji’nan, Shandong, 250100, P.R. China

Received 12 July 2000; revised 9 October 2001

With the help of the iterative method in functional analysis theory based on the Gouy–
Chapman model in the colloid and interface chemistry an analytic solution of the potential of
electrical double layer of spherical micelles has been obtained. This method has eliminated
the restriction that the Poisson–Boltzmann equation, which represents the distribution of the
potential in the double layer, can be solved only under the condition ofzeψ � kT so far.
The connections between the present results and those from Verwey and Overbeek’s previous
work have also been discussed. Our approach provides a simple but effective method for the
calculation of the potential of electrical double layer under general potential condition.
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1. Introduction

There exists an electrical double layer (EDL) between the surface of a micelle and
the bulk solution. The distribution of the charge of ions in the layer plays a significant
role to many properties of a colloid solution, such as the adsorption of interface, the state
of interfacial film between phases, the diffusion, effusion and rheology of micelles [1–3],
and the interaction among the micelles in solution [4–6]. The properties of the EDL
are characterized by the so-called Poisson–Boltzmann (PB) equation of potential. For
that reason, a solution of the equation has been sought in colloid and interface science
field for a long time. To our knowledge only the PB equation of the Gouy–Chapman’s
(GC) flat-plate model has been solved [2–4]. For a spherical particle, its structure of PB
equation is different from that of the flat-plate EDL. Therefore, except the commonly
used Debye–Hückel (DH) approximation [2,4], though some other approximate methods
have been introduced for dealing with the equation [2,4–6], there is still not enough
progress made so far.
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The solution given by the DH approach is restricted by the conditionzeψ � kT ,
which means that the potential must be very low for a spherical particle at usual temper-
ature. But in most cases this condition cannot be satisfied for an actual colloid solution.
Therefore, a much more accurate solution of the equation is still in urgent need.

The aim of the present work is, with the help of functional analysis theory and on
the basis of the GC model, to give an analytic solution of the potentialψ for the EDL of
a spherical particle under general potential condition.

2. The model of EDL [2–4]

According to the colloids and interface scientific theory, EDLs exist between dif-
ferent phases (such as gas/liquid, solid/liquid and liquid/liquid phases) and a few of
theoretical models have been presented to explain the potential of the layer thus far. All
the aims of those models can be summarized to solve the potential represented by the
following PB equation [1–5]:

∇2ψ = −4πe

ε

∑
i

zini0 exp

(
−zieψ

kT

)
. (1)

Hereψ , e, ε, k andT are the potential of the EDL, the elementary charge, the dielectric
constant, the Boltzmann constant and the temperature of the studied system, respectively.
zi andni0 are the valence numbers of ions and their concentration in the bulk phase far
away from the interface of phases, respectively, and∇2 is the Laplace operator. In the
spherical coordinates, the Laplace operator takes the following form:
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For the symmetryz–z type ion pair, the concentrations of cations and anionsn+0 andn−0
as well as their valence numbersz+ andz− are related as follows:n+0 = n−0 = n0 and
z+ = z− = z. So, equation (1) can be rewritten as

∇2ψ = −4πzen0

ε

[
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)
− exp

(
ze

kT
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)]
. (3)

Supposing a flat-plate carrying a positive charge, when we consider its potential distrib-
ution, we define the plate being infinite in both the positive and negative directions ofy

andz. In this case, equation (1) becomes

d2
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ψ = −4πzen0

ε
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ψ

)
− exp

(
ze

kT
ψ

)]
. (4)

Equation (4) is a second-order nonlinear differential equation inψ . It is difficult to solve
with conventional methods.

Debye and Hückel [3] used an approximate method to solve the equation. They
supposedzeψ � kT (it is true in some special situations), then the right side of equa-
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tion (4) can be expanded as a Taylor series. And if the terms ofψ in the series are only
retained to the first order, equation (4) can be transformed into

d2

dx2
ψ = 8πe2n0z

2

εkT
ψ. (5)

Equation (5) is a second-order linear differential equation inψ and can be solved easily
by using the conventional method.

In order to eliminate the restriction of the conditionzeψ � kT , Gouy and Chap-
man [3] made an appropriate treatment of equation (4). Multiplication of both sides of
equation (4) by 2 dψ/dx gives [2,3]

2
dψ

dx

d2

dx2
ψ = −8πen0z

ε

[
exp

(
− ze

kT
ψ

)
− exp

(
ze

kT
ψ

)]
dψ

dx
. (6)

Equation (6) is just the derivation of equation(
dψ
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Then, equation (7) can be simplified as
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Equation (8) is a first-order differential equation, and also can be solved easily in terms
of the conventional method.

For the EDL of a spherical shape, its symmetry properties transform equation (1)
as [3]
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It is also a second-order nonlinear differential equation inψ with constant coefficients,
but different from equation (6) in shape. Therefore, it cannot be solved by the similar
Gouy–Chapman method as above. However, if the iterative method in functional analy-
sis theory is used, this work can be done. In the next sections we will illustrate validity
of this method.

3. The iteration method in Banach space [7–10]

For a setC composed of functions(ψ, φ, . . .) that are continuous and have at least
second-order derivative in the open interval(a, b), wherea andb are two different real
numbers, we can define a norm [7,8]

‖ψ‖ = max
a<r<b

∣∣ψ(r)
∣∣. (10)
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It is easy to prove that any functions in the set can satisfy the following axioms of
norm. That is, ifψ , φ ∈ C, then [7,8] we have

(i) ‖ψ‖ � 0;

(ii) ‖ψ + φ‖ � ‖�‖ + ‖φ‖;
(iii ) ‖λψ‖ = |λ| ‖ψ‖ (λ is a real).

For example, we may takea = 0, b → ∞. According to the functional analy-
sis theory, the setC forms a Banach spaceB. Considering an operator̂P acting on
the spaceB, then the operator̂P operates on the functionψ in this space to give an
identicalψ , i.e.,

ψ = P̂ψ. (11)

And if the operator̂P also satisfies the Lipschitz condition∥∥P̂ψ − P̂ φ
∥∥ � α‖ψ − φ‖, ψ, φ ∈ B, (12)

whereα is called the Lipschitz constant, in that case beginning with any functionψ0

(whereψ0 ∈ B), we can get

ψn+1(r) = P̂ψn(r), n = 0,1,2, . . . , (13)

and

lim
n→∞ψn(r) = ψ(r). (14)

Hereψ(r) is the only solution of equation [7,8]

ψ(r) = P̂ψ(r), (15)

andψn(r) is called the approximate solution ofnth-order iteration of equation (15).
In the above theoretical method, there are two aspects that should be paid atten-

tion to:

(1) Most of the differential (or integral) equations and their corresponding op-
eratorP̂ in physical chemistry problems can satisfy the above condition, so
the solutions in any order iteration can be obtained. Therefore, this iterative
method appears to have wide range of validity if the problems can satisfy the
above conditions.

(2) Though it is true in principle that the choice of aψ0(r) (ψ0(r) ∈ B) is arbi-
trary, whereψ0(r) is called the zero-order iterative approximate solution, the
convergence velocity of functionsψn(r) (n = 0,1,2, . . .) to the precise solu-
tion ψ(r) is rather different for differentψ0(r). The experience of practical
calculation shows that ifψ0(r) is selected correctly, only the solution in the
first (or the second) order iteration is accurate enough for most chemical prob-
lems. To the potential of the EDL, it is not difficult to understand thatψ(r) is
a continuous function and has the first and the second order derivatives that are
continuous in the open interval(a, b) in the views of both physical chemistry
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and mathematics, wherea andb are the two boundary sides of the EDL. Since
the maximum of the continuous functionψ(r) must exist in the open interval
(0,∞), so the norm expressed by equation (10) can be defined. And it can be
easily proved that‖ψ‖ satisfies the axioms of norm (i), (ii) and (iii), therefore,
we haveψ(r) ∈ B. The operator̂P corresponding to equation (9) is defined
as

P̂ = kT

ze
sinh−1

[
ε

8πen0z

1

r2

d

dr

(
r2 d

dr

)]
, (16)

where sinh−1 is the anti-operator of the hyperbolic sine operator sinh. So, equa-
tion (9) can be rewritten as

ψ(r) = P̂ψ(r). (17)

In the next section, we will solve this equation (or equation (9)) by means of
the iteration method.

4. A solution to the PB equation of the EDL of a spherical particle with the
iterative method

If the condition zeψ � kT is used, which means that the potentialψ(r) is
very low at a usual temperature, we can expand the functions exp(zeψ/(kT )) and
exp(−zeψ/(kT )) to the first order in the Taylor series. From equation (9), we can obtain

1

r2

d

dr2

(
r2 d

dr
ψ

)
= κ2ψ, (18)

whereκ2 = 8πe2n0z
2/(εkT ). Equation (18) is a second-order linear differential equa-

tion with the consistent coefficients, and, as mentioned above, it can be solved easily in
terms of conventional methods. Its general solution is [3]

ψ(r) = A

r
exp(−κr)+ B

r
exp(κr), (19)

whereA andB are two arbitrary constants and only can be determined separately by
choosing two different conditions. The first one (boundary condition) is [3]

lim
r→∞ψ(r) = 0. (20)

Under this condition,B becomes zero, and equation (19) changes to [3]

ψ(r) = A

r
exp(−κr). (21)

And the second one (infinite dilution condition) is

lim
κ→0

ψ(r) = q

εr
= ze

εr
. (22)
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So, we haveA = q/ε (whereq = ze) andψ(r) = q exp(−κr)/(εr). This is the work
done by Verwey and Overbeek [2,3] for the potential of a spherical particle under the
conditionzeψ � kT . But for the convenience of discussion with iterative method in the
following steps, we do not use this conditionA = q/ε temporarily. This means thatA
remains an arbitrary constant, which needs to be determined.

In order to solve equation (9) with iterative method, we choose equation (21) as
the zero-order approximate solutionψ0(r). From equations (13) and (16), we get the
first-order approximate solution of equation (9),

ψ1= kT

ze
sinh−1
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ε

8πen0z

1

r2

d

dr

(
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)]
A

r
exp(−κr)

= kT
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[
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A

r
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]
.

(23)

Equation (23) also can be rewritten as

sinh

[
ze

kT
ψ1(r)

]
= ze

kT

A

r
exp(−κr). (24)

Both equations (24) and (23) are different from equation (21) because they have got rid
of the restriction of the very low potential conditionzeψ � kT .

If the conditionzeψ � kT is used in equation (24), and also if we expand the
function sinh[(ze/(kT ))ψ1(r)] only to the first order in Taylor series, we can get

ψ1(r) = A

r
exp(−κr), (25)

which is identical with equation (21) under the very low potential condition. It, thus,
confirms that the iterative method used for solving equation (9) is reasonable and the
choice of the zero-order approximate solutionψ0(r) is appropriate.

Further using equations (13), (16) and (9), we can get the solution in the second-
order iterationψ2(r) from ψ1(r) as

ψ2(r) = P̂ψ1(r) = kT

ze
sinh−1 f (r), (26)

where

f (r)= (zE/(kT ))(A/r)exp(−κr)√
1+ [(ze/(kT ))(A/r)exp(−κr)]2

×
{

1− [(zE/(kT ))(A/r)exp(−κr)]2√
1+ [(ze/(kT ))(A/r)exp(−κr)]2

(
1+ 1

κr

)2}
. (27)

If the conditionzeψ � kT is used also in equation (27), we have

f (r) = ze

kT

A

r
exp(−κr). (28)
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And substituting equation (28) into equation (26), we will get the result which is the
same as equation (25) again. Comparing equation (26) with equation (25), we can find
thatψ2(r) in equation (26) is further approaching the real potentialψ(r). With the above
processes, we can obtain the potentialψn(r) up to any accuracy ofψ(r).

5. Conclusions

We have described an iterative method in functional analysis theory for solving
the PB equation of the EDL for a spherical particle, and obtained a general analytical
solution for the potential under general potential condition. We have also deduced the
solutions in the first and the second order iteration for potential:ψ1(r) andψ2. Following
the similar procedure, we can obtain the solutions of the potential to any accuracyψn(r).
The method is superior to the conventional ones in that it has thoroughly got rid of the
difficulty, which was puzzling people for a long time, that the PB equation can be solved
only under the very low potential conditionzeψ � kT . And this iterative method is very
valuable for the practical calculation of the potential of EDL with spherical structure
particles in colloid and interface science field since it can be used not only for any cases
of potential but also for any values of the charge number and of the temperature of
the system. With the much more accurate results of potential, we can further precisely
illustrate many other properties of micelles as we have mentioned in the introduction.
And we expect the functional analysis method also to be a very useful tool to solve
many other similar problems in chemistry.
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